首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5233篇
  免费   437篇
  国内免费   1127篇
  2023年   99篇
  2022年   102篇
  2021年   168篇
  2020年   150篇
  2019年   168篇
  2018年   168篇
  2017年   179篇
  2016年   196篇
  2015年   170篇
  2014年   211篇
  2013年   376篇
  2012年   192篇
  2011年   233篇
  2010年   168篇
  2009年   207篇
  2008年   237篇
  2007年   246篇
  2006年   254篇
  2005年   247篇
  2004年   245篇
  2003年   234篇
  2002年   235篇
  2001年   249篇
  2000年   221篇
  1999年   192篇
  1998年   127篇
  1997年   137篇
  1996年   125篇
  1995年   129篇
  1994年   121篇
  1993年   139篇
  1992年   107篇
  1991年   106篇
  1990年   82篇
  1989年   85篇
  1988年   81篇
  1987年   50篇
  1986年   44篇
  1985年   55篇
  1984年   47篇
  1983年   29篇
  1982年   23篇
  1981年   27篇
  1980年   27篇
  1979年   23篇
  1978年   19篇
  1977年   20篇
  1976年   13篇
  1975年   11篇
  1974年   11篇
排序方式: 共有6797条查询结果,搜索用时 15 毫秒
91.
The treatment of municipal-type synthetic wastewater was carried out using a three stages net-like rotating biological contactor (NRBC). The results indicated that, compared with conventional rotating biological contactor (RBC), NRBC have several advantages, such as quick start-up, high biomass concentration and can handle high organic loading rates. The COD and total nitrogen removal rates achieved were 78.8–89.7% and 40.2–61.4%, respectively, in aerobic treatment of low COD municipal-type wastewater at hydraulic retention times (HRT) from 5 to 9 h. The COD removal rate achieved 80–95% when organic loading varied between 16 and 40 gCOD/m2 d. A large amount of nematodes were found in the NRBC system, which made the NRBC system produce relatively low amounts of waste sludge, due to their grazing.  相似文献   
92.
93.
To evaluate the pathogenicity of Metarhizium anisopliae (Metschinkoff) Sorokin (Deuteromycotina: Hyphomycetes) a bioassay was designed under laboratory conditions against Rhyzopertha dominica F. (Coleoptera: Bostrychidae) on stored wheat. The fungus was applied at the dose rates of 8 × 103, 8 × 105, 8 × 107 and 8 × 109 conidia/kg of wheat and the bioassay was conducted at 25°C with 60% relative humidity. The data regarding the mortality was recorded after 7 and 14 days exposure intervals. All the treatments gave the significant mortality of R. dominica and M. anisopliae of 8 × 109 conidia/kg was found to be the most effective after a 14-day exposure interval. There was greater production of progeny when the low rate of M. anisopliae was applied to wheat. Overall, our study showed that M. anisopliae is vigorous when applied at a high dose rate which revealed an effective control of R. dominica and also played a pivotal role in the integrated pest management program (IPM) of stored wheat insect pests.  相似文献   
94.
The biotransformation of heavy metals from contaminated soil was examined using a facultative anaerobic bacterium Shewanella sp. HN-41. The experiments were carried out to assess the influence of glucose at various pH on the transformation of heavy metals from soil thorough solubilization. A preliminary study on the transformation of heavy metals from soil was first performed using a defined medium supplemented with glucose at 10, 20, and 30 mM to select the effective concentration. Among the three concentrations examined, glucose at 30 mM leached a highest level of metal ions. Therefore, 30 mM glucose was used as the representative carbon source for the subsequent experiments in a defined medium at various pH (5, 6, 7, 8, and 9). The organism HN-41 was not influenced by pH ranging from acidic to neutral and was able to metabolize all the metal elements from contaminated soil. The level of Fe, Cr, As, Mn, Pb, and Al solubilization ranged from 3 to 7664 mg kg?1 at various initial pH. The rate of metal solubilization was found to be low at neutral pH compared with acidic and alkaline. These results are expected to assist in the development of heavy metal transformation processes for the decontamination of heavy metal-contaminated soil.  相似文献   
95.

Background and Aims

A model to predict anthesis time of a wheat plant from environmental and genetic information requires integration of current concepts in physiological and molecular biology. This paper describes the structure of an integrated model and quantifies its response mechanisms.

Methods

Literature was reviewed to formulate the components of the model. Detailed re-analysis of physiological observations are utilized from a previous publication by the second two authors. In this approach measurements of leaf number and leaf and primordia appearance of near isogenic lines of spring and winter wheat grown for different durations in different temperature and photoperiod conditions are used to quantify mechanisms and parameters to predict time of anthesis.

Key Results

The model predicts the time of anthesis from the length of sequential phases: 1, embryo development; 2, dormant; 3, imbibed/emerging; 4, vegetative; 5, early reproductive; 6, pseudo-stem extension; and 7, ear development. Phase 4 ends with vernalization saturation (VS), Phase 5 with terminal spikelet (TS) and Phase 6 with flag leaf ligule appearance (FL). The durations of Phases 4 and 5 are linked to the expression of Vrn genes and are calculated in relation to change in Haun stage (HS) to account for the effects of temperature per se. Vrn1 must be expressed to sufficient levels for VS to occur. Vrn1 expression occurs at a base rate of 0·08/HS in winter ‘Batten’ and 0·17/HS in spring ‘Batten’ during Phases 1, 3 and 4. Low temperatures promote expression of Vrn1 and accelerate progress toward VS. Our hypothesis is that a repressor, Vrn4, must first be downregulated for this to occur. Rates of Vrn4 downregulation and Vrn1 upregulation have the same exponential response to temperature, but Vrn4 is quickly upregulated again at high temperatures, meaning short exposure to low temperature has no impact on the time of VS. VS occurs when Vrn1 reaches a relative expression of 0·76 and Vrn3 expression begins. However, Vrn2 represses Vrn3 expression so Vrn1 must be further upregulated to repress Vrn2 and enable Vrn3 expression. As a result, the target for Vrn1 to trigger VS was 0·76 in 8-h photoperiods (Pp) and increased at 0·026/HS under 16-h Pp as levels of Vrn2 increased. This provides a mechanism to model short-day vernalization. Vrn3 is expressed in Phase 5 (following VS), and apparent rates of Vrn3 expression increased from 0·15/HS at 8-h Pp to 0·33/HS at 16-h Pp. The final number of leaves is calculated as a function of the HS at which TS occurred (TSHS): 2·86 + 1·1 × TSHS. The duration of Phase 6 is then dependent on the number of leaves left to emerge and how quickly they emerge.

Conclusions

The analysis integrates molecular biology and crop physiology concepts into a model framework that links different developmental genes to quantitative predictions of wheat anthesis time in different field situations.  相似文献   
96.

Background

Electrical capacitance, measured between an electrode inserted at the base of a plant and an electrode in the rooting substrate, is often linearly correlated with root mass. Electrical capacitance has often been used as an assay for root mass, and is conventionally interpreted using an electrical model in which roots behave as cylindrical capacitors wired in parallel. Recent experiments in hydroponics show that this interpretation is incorrect and a new model has been proposed. Here, the new model is tested in solid substrates.

Methods

The capacitances of compost and soil were determined as a function of water content, and the capacitances of cereal plants growing in sand or potting compost in the glasshouse, or in the field, were measured under contrasting irrigation regimes.

Key Results

Capacitances of compost and soil increased with increasing water content. At water contents approaching field capacity, compost and soil had capacitances at least an order of magnitude greater than those of plant tissues. For plants growing in solid substrates, wetting the substrate locally around the stem base was both necessary and sufficient to record maximum capacitance, which was correlated with stem cross-sectional area: capacitance of excised stem tissue equalled that of the plant in wet soil. Capacitance measured between two electrodes could be modelled as an electrical circuit in which component capacitors (plant tissue or rooting substrate) are wired in series.

Conclusions

The results were consistent with the new physical interpretation of plant capacitance. Substrate capacitance and plant capacitance combine according to standard physical laws. For plants growing in wet substrate, the capacitance measured is largely determined by the tissue between the surface of the substrate and the electrode attached to the plant. Whilst the measured capacitance can, in some circumstances, be correlated with root mass, it is not a direct assay of root mass.  相似文献   
97.

Background

Tissue factor (TF), an in vivo initiator of blood coagulation, is a transmembrane protein and has two disulfides in the extracellular domain. The integrity of one cysteine pair, Cys186–Cys209, has been hypothesized to be essential for an allosteric “decryption” phenomenon, presumably regulating TF procoagulant function, which has been the subject of a lengthy debate. The conclusions of published studies on this subject are based on indirect evidences obtained by the use of reagents with potentially oxidizing/reducing properties.

Methods

The status of disulfides in recombinant TF1–263 and natural placental TF in their non-reduced native and reduced forms was determined by mass-spectrometry. Functional assays were performed to assess TF cofactor function.

Results

In native proteins, all four cysteines of the extracellular domain of TF are oxidized. Reduced TF retains factor VIIa binding capacity but completely loses the cofactor function.

Conclusion

The reduction of TF disulfides (with or without alkylation) eliminates TF regulation of factor VIIa catalytic function in both membrane dependent FX activation and membrane independent synthetic substrate hydrolysis.

General significance

Results of this study advance our knowledge on TF structure/function relationships.  相似文献   
98.
Abstract

Populations of the genus Fusarium in wheat fields were studied within the crop-growing season at Qena area (Upper Egypt) using two different types of media (DCPA and DRBA) at 25°C. Fourteen Fusarium species were isolated during this study, namely F. anthophilum, F. aquaeductuum, F. chlamdosporum, F. dimerum, F. merismoides, F. moniliforme, F. oxysporum, F. poae, F. proliferatum, F. sambucinum, F. scripi, F. solani, F. sporotrichioides and F. subglutinans. Fusarium merismoides, F. oxysporum and F. sambucinum were the most common Fusarium species isolated from different wheat plant parts (rhizosphere and rhizoplane) as well as from the wheat fields (soil and air). Fusarium spp. rarely appeared at the beginning of the season and increased sharply between January to March and decreased slightly or sharply at the end of the season according to the type of media and isolation source.  相似文献   
99.
100.
Heavey P 《Bioethics》2013,27(1):36-47
Some religious believers may see synthetic biology as usurping God's creative role. The Catholic Church has yet to issue a formal teaching on the field (though it has issued some informal statements in response to Craig Venter's development of a 'synthetic' cell). In this paper I examine the likely reaction of the Catholic Magisterium to synthetic biology in its entirety. I begin by examining the Church's teaching role, from its own viewpoint, to set the necessary backround and context for the discussion that follows. I then describe the Church's attitude to science, and particularly to biotechnology. From this I derive a likely Catholic theology of synthetic biology. The Church's teachings on scientific and biotech research show that it is likely to have a generally positive disposition to synbio, if it and its products can be acceptably safe. Proper evaluation of, and protection against, risk will be a significant factor in determining the morality of the research. If the risks can be minimized through regulation or other means, then the Church is likely to be supportive. The Church will also critique the social and legal environment in which the research is done, evaluating issues such as the patenting of scientific discoveries and of life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号